pandas入门
按照以下约定引用相关package
|
|
|
|
pandas数据结构介绍
Series
Series是一种类似于一维数组的对象,由一组数据以及一组与之相关的数据标签(类似于字典的键)组成,所以可以看成是一个有序的字典
|
|
0 4
1 7
2 -5
3 3
dtype: int64
|
|
array([ 4, 7, -5, 3], dtype=int64)
RangeIndex(start=0, stop=4, step=1)
|
|
d 4
b 7
a -5
c 3
dtype: int64
|
|
Index(['d', 'b', 'a', 'c'], dtype='object')
|
|
-5
|
|
c 3
a -5
d 6
dtype: int64
各种Numpy运算都是作用在数据上,同时索引与数据的链接会一直保持
|
|
d 6
b 7
c 3
dtype: int64
|
|
d 12
b 14
a -10
c 6
dtype: int64
|
|
d 403.428793
b 1096.633158
a 0.006738
c 20.085537
dtype: float64
|
|
True
|
|
False
因此可以直接根据Numpy的Dict来创建Series
|
|
Ohio 35000
Oregon 16000
Texas 71000
Utah 5000
dtype: int64
如果传入了index参数的话,那么就会与传入的Dict做键匹配,没有匹配上的就设为NaN
|
|
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
dtype: float64
|
|
California True
Ohio False
Oregon False
Texas False
dtype: bool
|
|
California False
Ohio True
Oregon True
Texas True
dtype: bool
|
|
California True
Ohio False
Oregon False
Texas False
dtype: bool
Series有一个非常重要的数据对齐的功能
|
|
Ohio 35000
Oregon 16000
Texas 71000
Utah 5000
dtype: int64
|
|
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
dtype: float64
|
|
California NaN
Ohio 70000.0
Oregon 32000.0
Texas 142000.0
Utah NaN
dtype: float64
Series本身以及其索引都有一个叫做name的属性,这个属性十分重要,以后很多高级功能都会用到
|
|
state
California NaN
Ohio 35000.0
Oregon 16000.0
Texas 71000.0
Name: population, dtype: float64
可以通过直接赋值的方式修改index属性
|
|
Bob 4
Steve 7
Jeff -5
Ryan 3
dtype: int64
DataFrame
DataFrame是一个表格型的数据结构,可以看成由Series组成的字典,只不过这些Series共用一套索引
|
|
数据会被排序
|
|
pop | state | year | |
---|---|---|---|
0 | 1.5 | Ohio | 2000 |
1 | 1.7 | Ohio | 2001 |
2 | 3.6 | Ohio | 2002 |
3 | 2.4 | Nevada | 2001 |
4 | 2.9 | Nevada | 2002 |
|
|
year | state | pop | |
---|---|---|---|
0 | 2000 | Ohio | 1.5 |
1 | 2001 | Ohio | 1.7 |
2 | 2002 | Ohio | 3.6 |
3 | 2001 | Nevada | 2.4 |
4 | 2002 | Nevada | 2.9 |
|
|
year | state | pop | debt | |
---|---|---|---|---|
one | 2000 | Ohio | 1.5 | NaN |
two | 2001 | Ohio | 1.7 | NaN |
three | 2002 | Ohio | 3.6 | NaN |
four | 2001 | Nevada | 2.4 | NaN |
five | 2002 | Nevada | 2.9 | NaN |
|
|
Index(['year', 'state', 'pop', 'debt'], dtype='object')
DataFrame每一个Key对应的Value都是一个Series
|
|
one Ohio
two Ohio
three Ohio
four Nevada
five Nevada
Name: state, dtype: object
|
|
one 2000
two 2001
three 2002
four 2001
five 2002
Name: year, dtype: int64
注意到name属性也已经被设置好了
ix相当于一个行索引?
|
|
year 2002
state Ohio
pop 3.6
debt NaN
Name: three, dtype: object
可以利用Numpy的广播功能
|
|
year | state | pop | debt | |
---|---|---|---|---|
one | 2000 | Ohio | 1.5 | 16.5 |
two | 2001 | Ohio | 1.7 | 16.5 |
three | 2002 | Ohio | 3.6 | 16.5 |
four | 2001 | Nevada | 2.4 | 16.5 |
five | 2002 | Nevada | 2.9 | 16.5 |
也可以赋值一个列表,但是长度必须匹配
|
|
year | state | pop | debt | |
---|---|---|---|---|
one | 2000 | Ohio | 1.5 | 0.0 |
two | 2001 | Ohio | 1.7 | 1.0 |
three | 2002 | Ohio | 3.6 | 2.0 |
four | 2001 | Nevada | 2.4 | 3.0 |
five | 2002 | Nevada | 2.9 | 4.0 |
如果是赋值一个Series,则会匹配上索引,没有匹配上的就是置为NaN
|
|
year | state | pop | debt | |
---|---|---|---|---|
one | 2000 | Ohio | 1.5 | NaN |
two | 2001 | Ohio | 1.7 | -1.2 |
three | 2002 | Ohio | 3.6 | NaN |
four | 2001 | Nevada | 2.4 | -1.5 |
five | 2002 | Nevada | 2.9 | -1.7 |
也可以进行逻辑操作
|
|
year | state | pop | debt | eastern | |
---|---|---|---|---|---|
one | 2000 | Ohio | 1.5 | NaN | True |
two | 2001 | Ohio | 1.7 | -1.2 | True |
three | 2002 | Ohio | 3.6 | NaN | True |
four | 2001 | Nevada | 2.4 | -1.5 | False |
five | 2002 | Nevada | 2.9 | -1.7 | False |
del用于删除一列
|
|
Index(['year', 'state', 'pop', 'debt'], dtype='object')
只要是通过索引方式进行的操作,都是直接在原数据上进行的操作,不是一个副本
嵌套的字典也可直接生成DataFrame,只不过内层的键被当作index,外层的键被当作colums
|
|
|
|
Nevada | Ohio | |
---|---|---|
2000 | NaN | 1.5 |
2001 | 2.4 | 1.7 |
2002 | 2.9 | 3.6 |
同样可以进行转置,这样的话index和column就会互换
|
|
2000 | 2001 | 2002 | |
---|---|---|---|
Nevada | NaN | 2.4 | 2.9 |
Ohio | 1.5 | 1.7 | 3.6 |
显式地指定索引,不匹配的会置为NaN
|
|
Nevada | Ohio | |
---|---|---|
2001 | 2.4 | 1.7 |
2002 | 2.9 | 3.6 |
2003 | NaN | NaN |
|
|
Nevada | Ohio | |
---|---|---|
2000 | NaN | 1.5 |
2001 | 2.4 | 1.7 |
2002 | 2.9 | 3.6 |
还可以这样构建
|
|
Nevada | Ohio | |
---|---|---|
2000 | NaN | 1.5 |
2001 | 2.4 | 1.7 |
|
|
Nevada | Ohio | |
---|---|---|
2000 | NaN | 1.5 |
2001 | 2.4 | 1.7 |
2002 | 2.9 | 3.6 |
name属性也会在表格中显示出来
|
|
state | Nevada | Ohio |
---|---|---|
year | ||
2000 | NaN | 1.5 |
2001 | 2.4 | 1.7 |
2002 | 2.9 | 3.6 |
values方法只返回数据,不返回index以及key
|
|
array([[ nan, 1.5],
[ 2.4, 1.7],
[ 2.9, 3.6]])
|
|
year | state | pop | debt | |
---|---|---|---|---|
one | 2000 | Ohio | 1.5 | NaN |
two | 2001 | Ohio | 1.7 | -1.2 |
three | 2002 | Ohio | 3.6 | NaN |
four | 2001 | Nevada | 2.4 | -1.5 |
five | 2002 | Nevada | 2.9 | -1.7 |
|
|
array([[2000, 'Ohio', 1.5, nan],
[2001, 'Ohio', 1.7, -1.2],
[2002, 'Ohio', 3.6, nan],
[2001, 'Nevada', 2.4, -1.5],
[2002, 'Nevada', 2.9, -1.7]], dtype=object)
索引对象
Index是一个可以单独提取出来的对象
|
|
Index(['a', 'b', 'c'], dtype='object')
|
|
Index(['b', 'c'], dtype='object')
不可修改~!
|
|
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-52-676fdeb26a68> in <module>()
----> 1 index[1] = 'd'
C:\Users\Ewan\Anaconda3\lib\site-packages\pandas\indexes\base.py in __setitem__(self, key, value)
1243
1244 def __setitem__(self, key, value):
-> 1245 raise TypeError("Index does not support mutable operations")
1246
1247 def __getitem__(self, key):
TypeError: Index does not support mutable operations
直接创建Index对象
|
|
True
|
|
state | Nevada | Ohio |
---|---|---|
year | ||
2000 | NaN | 1.5 |
2001 | 2.4 | 1.7 |
2002 | 2.9 | 3.6 |
|
|
True
|
|
False
基本功能
重新索引
|
|
d 4.5
b 7.2
a -5.3
c 3.6
dtype: float64
重排索引形成新对象
|
|
a -5.3
b 7.2
c 3.6
d 4.5
e NaN
dtype: float64
|
|
a -5.3
b 7.2
c 3.6
d 4.5
e 0.0
dtype: float64
|
|
0 blue
1 blue
2 purple
3 purple
4 yellow
5 yellow
dtype: object
|
|
Ohio | Texas | California | |
---|---|---|---|
a | 0 | 1 | 2 |
c | 3 | 4 | 5 |
d | 6 | 7 | 8 |
|
|
Ohio | Texas | California | |
---|---|---|---|
a | 0.0 | 1.0 | 2.0 |
b | NaN | NaN | NaN |
c | 3.0 | 4.0 | 5.0 |
d | 6.0 | 7.0 | 8.0 |
|
|
Texas | Utah | California | |
---|---|---|---|
a | 1 | NaN | 2 |
c | 4 | NaN | 5 |
d | 7 | NaN | 8 |
插值只能按行
|
|
Texas | Utah | California | |
---|---|---|---|
a | 1 | NaN | 2 |
b | 1 | NaN | 2 |
c | 4 | NaN | 5 |
d | 7 | NaN | 8 |
用ix方法进行重新索引操作会使得代码很简洁
|
|
Texas | Utah | California | |
---|---|---|---|
a | 1.0 | NaN | 2.0 |
b | NaN | NaN | NaN |
c | 4.0 | NaN | 5.0 |
d | 7.0 | NaN | 8.0 |
丢弃指定轴上的项
|
|
Texas | Utah | California | |
---|---|---|---|
a | 1.0 | NaN | 2.0 |
b | NaN | NaN | NaN |
c | 4.0 | NaN | 5.0 |
d | 7.0 | NaN | 8.0 |
|
|
a 0.0
b 1.0
d 3.0
e 4.0
dtype: float64
|
|
a 0.0
b 1.0
e 4.0
dtype: float64
|
|
one | two | three | four | |
---|---|---|---|---|
Ohio | 0 | 1 | 2 | 3 |
Colorado | 4 | 5 | 6 | 7 |
Utah | 8 | 9 | 10 | 11 |
New York | 12 | 13 | 14 | 15 |
|
|
one | two | three | four | |
---|---|---|---|---|
Utah | 8 | 9 | 10 | 11 |
New York | 12 | 13 | 14 | 15 |
|
|
one | three | four | |
---|---|---|---|
Ohio | 0 | 2 | 3 |
Colorado | 4 | 6 | 7 |
Utah | 8 | 10 | 11 |
New York | 12 | 14 | 15 |
|
|
one | three | |
---|---|---|
Ohio | 0 | 2 |
Colorado | 4 | 6 |
Utah | 8 | 10 |
New York | 12 | 14 |
索引,选取和过滤
多种索引方式
|
|
a 0.0
b 1.0
c 2.0
d 3.0
dtype: float64
1.0
|
|
1.0
|
|
c 2.0
d 3.0
dtype: float64
|
|
b 1.0
a 0.0
d 3.0
dtype: float64
|
|
b 1.0
d 3.0
dtype: float64
|
|
a 0.0
b 1.0
dtype: float64
这种切片方式…
末端包含
|
|
b 1.0
c 2.0
dtype: float64
|
|
a 0.0
b 5.0
c 5.0
d 3.0
dtype: float64
|
|
one | two | three | four | |
---|---|---|---|---|
Ohio | 0 | 1 | 2 | 3 |
Colorado | 4 | 5 | 6 | 7 |
Utah | 8 | 9 | 10 | 11 |
New York | 12 | 13 | 14 | 15 |
|
|
Ohio 1
Colorado 5
Utah 9
New York 13
Name: two, dtype: int32
|
|
three | one | |
---|---|---|
Ohio | 2 | 0 |
Colorado | 6 | 4 |
Utah | 10 | 8 |
New York | 14 | 12 |
|
|
one | two | three | four | |
---|---|---|---|---|
Ohio | 0 | 1 | 2 | 3 |
Colorado | 4 | 5 | 6 | 7 |
|
|
one | two | three | four | |
---|---|---|---|---|
Colorado | 4 | 5 | 6 | 7 |
Utah | 8 | 9 | 10 | 11 |
New York | 12 | 13 | 14 | 15 |
|
|
one | two | three | four | |
---|---|---|---|---|
Ohio | True | True | True | True |
Colorado | True | False | False | False |
Utah | False | False | False | False |
New York | False | False | False | False |
|
|
|
|
one | two | three | four | |
---|---|---|---|---|
Ohio | 0 | 0 | 0 | 0 |
Colorado | 0 | 5 | 6 | 7 |
Utah | 8 | 9 | 10 | 11 |
New York | 12 | 13 | 14 | 15 |
索引的另外一种选择
|
|
two 5
three 6
Name: Colorado, dtype: int32
|
|
four | one | two | |
---|---|---|---|
Colorado | 7 | 0 | 5 |
Utah | 11 | 8 | 9 |
|
|
one 8
two 9
three 10
four 11
Name: Utah, dtype: int32
|
|
Ohio 0
Colorado 5
Utah 9
Name: two, dtype: int32
|
|
one | two | three | |
---|---|---|---|
Colorado | 0 | 5 | 6 |
Utah | 8 | 9 | 10 |
New York | 12 | 13 | 14 |
总结一下就是说,DataFrame是一个二维的数组,只不过每一维的索引方式除了序号之外,还可以用name属性来进行索引,且一切行为与序号无异
算术运算和数据对齐
|
|
|
|
a 7.3
c -2.5
d 3.4
e 1.5
dtype: float64
|
|
a -2.1
c 3.6
e -1.5
f 4.0
g 3.1
dtype: float64
数据对齐操作就是一种特殊的并集操作
|
|
a 5.2
c 1.1
d NaN
e 0.0
f NaN
g NaN
dtype: float64
|
|
b | c | d | |
---|---|---|---|
Ohio | 0.0 | 1.0 | 2.0 |
Texas | 3.0 | 4.0 | 5.0 |
Colorado | 6.0 | 7.0 | 8.0 |
|
|
b | d | e | |
---|---|---|---|
Utah | 0.0 | 1.0 | 2.0 |
Ohio | 3.0 | 4.0 | 5.0 |
Texas | 6.0 | 7.0 | 8.0 |
Oregon | 9.0 | 10.0 | 11.0 |
并且数据对齐操作是在所有维度上同时进行的
|
|
b | c | d | e | |
---|---|---|---|---|
Colorado | NaN | NaN | NaN | NaN |
Ohio | 3.0 | NaN | 6.0 | NaN |
Oregon | NaN | NaN | NaN | NaN |
Texas | 9.0 | NaN | 12.0 | NaN |
Utah | NaN | NaN | NaN | NaN |
在算术方法中填充词
下面这种定义column的方式值得注意
|
|
a | b | c | d | |
---|---|---|---|---|
0 | 0.0 | 1.0 | 2.0 | 3.0 |
1 | 4.0 | 5.0 | 6.0 | 7.0 |
2 | 8.0 | 9.0 | 10.0 | 11.0 |
|
|
a | b | c | d | e | |
---|---|---|---|---|---|
0 | 0.0 | 1.0 | 2.0 | 3.0 | 4.0 |
1 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 |
2 | 10.0 | 11.0 | 12.0 | 13.0 | 14.0 |
3 | 15.0 | 16.0 | 17.0 | 18.0 | 19.0 |
|
|
a | b | c | d | e | |
---|---|---|---|---|---|
0 | 0.0 | 2.0 | 4.0 | 6.0 | NaN |
1 | 9.0 | 11.0 | 13.0 | 15.0 | NaN |
2 | 18.0 | 20.0 | 22.0 | 24.0 | NaN |
3 | NaN | NaN | NaN | NaN | NaN |
要想填充值必须使用add方法
|
|
a | b | c | d | e | |
---|---|---|---|---|---|
0 | 0.0 | 2.0 | 4.0 | 6.0 | 4.0 |
1 | 9.0 | 11.0 | 13.0 | 15.0 | 9.0 |
2 | 18.0 | 20.0 | 22.0 | 24.0 | 14.0 |
3 | 15.0 | 16.0 | 17.0 | 18.0 | 19.0 |
reindex方法与add方法还是存在差异的
|
|
a | b | c | d | e | |
---|---|---|---|---|---|
0 | 0.0 | 1.0 | 2.0 | 3.0 | 0 |
1 | 4.0 | 5.0 | 6.0 | 7.0 | 0 |
2 | 8.0 | 9.0 | 10.0 | 11.0 | 0 |
DataFrame和Series之间的运算
|
|
array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]])
|
|
array([ 0., 1., 2., 3.])
广播操作
|
|
array([[ 0., 0., 0., 0.],
[ 4., 4., 4., 4.],
[ 8., 8., 8., 8.]])
|
|
b | d | e | |
---|---|---|---|
Utah | 0.0 | 1.0 | 2.0 |
Ohio | 3.0 | 4.0 | 5.0 |
Texas | 6.0 | 7.0 | 8.0 |
Oregon | 9.0 | 10.0 | 11.0 |
Series的name等于DataFrame的切片属性
|
|
b 0.0
d 1.0
e 2.0
Name: Utah, dtype: float64
默认情况下,DataFrame和Series之间的算术运算会将Series的index匹配到DataFrame的column, 然后沿着行向下广播
|
|
b | d | e | |
---|---|---|---|
Utah | 0.0 | 0.0 | 0.0 |
Ohio | 3.0 | 3.0 | 3.0 |
Texas | 6.0 | 6.0 | 6.0 |
Oregon | 9.0 | 9.0 | 9.0 |
如果Series的index与DataFrame的column不匹配,则进行数据对齐
|
|
b | d | e | f | |
---|---|---|---|---|
Utah | 0.0 | NaN | 3.0 | NaN |
Ohio | 3.0 | NaN | 6.0 | NaN |
Texas | 6.0 | NaN | 9.0 | NaN |
Oregon | 9.0 | NaN | 12.0 | NaN |
|
|
b | d | e | |
---|---|---|---|
Utah | 0.0 | 1.0 | 2.0 |
Ohio | 3.0 | 4.0 | 5.0 |
Texas | 6.0 | 7.0 | 8.0 |
Oregon | 9.0 | 10.0 | 11.0 |
|
|
Utah 1.0
Ohio 4.0
Texas 7.0
Oregon 10.0
Name: d, dtype: float64
匹配行并且在列上进行广播, 就必须要指定axis
|
|
b | d | e | |
---|---|---|---|
Utah | -1.0 | 0.0 | 1.0 |
Ohio | -1.0 | 0.0 | 1.0 |
Texas | -1.0 | 0.0 | 1.0 |
Oregon | -1.0 | 0.0 | 1.0 |
Ohio | Oregon | Texas | Utah | b | d | e | |
---|---|---|---|---|---|---|---|
Utah | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
Ohio | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
Texas | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
Oregon | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
函数应用和映射
|
|
|
|
b | d | e | |
---|---|---|---|
Utah | -0.204708 | 0.478943 | -0.519439 |
Ohio | -0.555730 | 1.965781 | 1.393406 |
Texas | 0.092908 | 0.281746 | 0.769023 |
Oregon | 1.246435 | 1.007189 | -1.296221 |
Numpy的元素级方法也可以应用到DataFrame上,直接把DataFrame当作二维的Numpy.array即可
|
|
b | d | e | |
---|---|---|---|
Utah | 0.204708 | 0.478943 | 0.519439 |
Ohio | 0.555730 | 1.965781 | 1.393406 |
Texas | 0.092908 | 0.281746 | 0.769023 |
Oregon | 1.246435 | 1.007189 | 1.296221 |
|
|
apply方法将函数映射到由各行或者各列形成的一维数组上
|
|
b 1.802165
d 1.684034
e 2.689627
dtype: float64
|
|
Utah 0.998382
Ohio 2.521511
Texas 0.676115
Oregon 2.542656
dtype: float64
|
|
b | d | e | |
---|---|---|---|
min | -0.555730 | 0.281746 | -1.296221 |
max | 1.246435 | 1.965781 | 1.393406 |
min | max | |
---|---|---|
Utah | -0.519439 | 0.478943 |
Ohio | -0.555730 | 1.965781 |
Texas | 0.092908 | 0.769023 |
Oregon | -1.296221 | 1.246435 |
元素级的函数映射applymap, 之所以叫这个名字是因为Series有一个元素级的映射函数map
|
|
b | d | e | |
---|---|---|---|
Utah | -0.20 | 0.48 | -0.52 |
Ohio | -0.56 | 1.97 | 1.39 |
Texas | 0.09 | 0.28 | 0.77 |
Oregon | 1.25 | 1.01 | -1.30 |
|
|
Utah -0.52
Ohio 1.39
Texas 0.77
Oregon -1.30
Name: e, dtype: object
排序和排名
对索引或者column进行(字典)排序
|
|
a 1
b 2
c 3
d 0
dtype: int32
|
|
d | a | b | c | |
---|---|---|---|---|
one | 4 | 5 | 6 | 7 |
three | 0 | 1 | 2 | 3 |
|
|
a | b | c | d | |
---|---|---|---|---|
three | 1 | 2 | 3 | 0 |
one | 5 | 6 | 7 | 4 |
降序
|
|
d | c | b | a | |
---|---|---|---|---|
three | 0 | 3 | 2 | 1 |
one | 4 | 7 | 6 | 5 |
按照data进行排序
|
|
2 -3
3 2
0 4
1 7
dtype: int64
在排序时,任何缺失值默认都会被放到Series的末尾
|
|
4 -3.0
5 2.0
0 4.0
2 7.0
1 NaN
3 NaN
dtype: float64
|
|
a | b | |
---|---|---|
0 | 0 | 4 |
1 | 1 | 7 |
2 | 0 | -3 |
3 | 1 | 2 |
对指定index或者column进行排序
|
|
a | b | |
---|---|---|
2 | 0 | -3 |
3 | 1 | 2 |
0 | 0 | 4 |
1 | 1 | 7 |
或者根据multi-index亦或multi-column进行排序
|
|
a | b | |
---|---|---|
2 | 0 | -3 |
0 | 0 | 4 |
3 | 1 | 2 |
1 | 1 | 7 |
默认情况下,rank方法通过“为各组分配一个平均排名”的方式破坏平级关系。也就是说,如果有多个相同的值,则这些值的rank就是这些相同值rand的算术平均。
|
|
0 7.5
1 1.0
2 7.5
3 5.0
4 3.0
5 2.0
6 5.0
7 5.0
dtype: float64
如果想按照一般方式排名
|
|
0 7.0
1 1.0
2 8.0
3 4.0
4 3.0
5 2.0
6 5.0
7 6.0
dtype: float64
使用每个分组的最大排名
|
|
0 2.0
1 8.0
2 2.0
3 5.0
4 6.0
5 7.0
6 5.0
7 5.0
dtype: float64
|
|
a | b | c | |
---|---|---|---|
0 | 0 | 4.3 | -2.0 |
1 | 1 | 7.0 | 5.0 |
2 | 0 | -3.0 | 8.0 |
3 | 1 | 2.0 | -2.5 |
指定维度
|
|
a | b | c | |
---|---|---|---|
0 | 2.0 | 3.0 | 1.0 |
1 | 1.0 | 3.0 | 2.0 |
2 | 2.0 | 1.0 | 3.0 |
3 | 2.0 | 3.0 | 1.0 |
带有重复值的轴索引
|
|
a 0
a 1
b 2
b 3
c 4
dtype: int32
|
|
False
返回一个Series
|
|
a 0
a 1
dtype: int32
|
|
4
|
|
0 | 1 | 2 | |
---|---|---|---|
a | 0.274992 | 0.228913 | 1.352917 |
a | 0.886429 | -2.001637 | -0.371843 |
b | 1.669025 | -0.438570 | -0.539741 |
b | 0.476985 | 3.248944 | -1.021228 |
|
|
0 | 1 | 2 | |
---|---|---|---|
b | 1.669025 | -0.438570 | -0.539741 |
b | 0.476985 | 3.248944 | -1.021228 |
汇总和计算描述统计
|
|
one | two | |
---|---|---|
a | 1.40 | NaN |
b | 7.10 | -4.5 |
c | NaN | NaN |
d | 0.75 | -1.3 |
|
|
one 9.25
two -5.80
dtype: float64
|
|
a 1.40
b 2.60
c 0.00
d -0.55
dtype: float64
|
|
a NaN
b 1.300
c NaN
d -0.275
dtype: float64
返回的是索引
|
|
one b
two d
dtype: object
|
|
one | two | |
---|---|---|
a | 1.40 | NaN |
b | 8.50 | -4.5 |
c | NaN | NaN |
d | 9.25 | -5.8 |
describe对于数值型和非数值型数据的行为不一样
|
|
C:\Users\Ewan\Anaconda3\lib\site-packages\numpy\lib\function_base.py:3834: RuntimeWarning: Invalid value encountered in percentile
RuntimeWarning)
one | two | |
---|---|---|
count | 3.000000 | 2.000000 |
mean | 3.083333 | -2.900000 |
std | 3.493685 | 2.262742 |
min | 0.750000 | -4.500000 |
25% | NaN | NaN |
50% | NaN | NaN |
75% | NaN | NaN |
max | 7.100000 | -1.300000 |
|
|
0 a
1 a
2 b
3 c
4 a
5 a
6 b
7 c
8 a
9 a
10 b
11 c
12 a
13 a
14 b
15 c
dtype: object
count 16
unique 3
top a
freq 8
dtype: object
相关系数和xi
|
|
|
|
AAPL | GOOG | IBM | MSFT | |
---|---|---|---|---|
Date | ||||
2010-01-04 | 27.727039 | 313.062468 | 111.405000 | 25.555485 |
2010-01-05 | 27.774976 | 311.683844 | 110.059232 | 25.563741 |
2010-01-06 | 27.333178 | 303.826685 | 109.344283 | 25.406859 |
2010-01-07 | 27.282650 | 296.753749 | 108.965786 | 25.142634 |
2010-01-08 | 27.464034 | 300.709808 | 110.059232 | 25.316031 |
2010-01-11 | 27.221758 | 300.255255 | 108.906903 | 24.994007 |
2010-01-12 | 26.912110 | 294.945572 | 109.773245 | 24.828866 |
2010-01-13 | 27.291720 | 293.252243 | 109.537735 | 25.060064 |
2010-01-14 | 27.133657 | 294.630868 | 111.287245 | 25.563741 |
2010-01-15 | 26.680198 | 289.710772 | 110.841458 | 25.481172 |
|
|
AAPL | GOOG | IBM | MSFT | |
---|---|---|---|---|
Date | ||||
2010-01-04 | 123432400 | 3927000 | 6155300 | 38409100 |
2010-01-05 | 150476200 | 6031900 | 6841400 | 49749600 |
2010-01-06 | 138040000 | 7987100 | 5605300 | 58182400 |
2010-01-07 | 119282800 | 12876600 | 5840600 | 50559700 |
2010-01-08 | 111902700 | 9483900 | 4197200 | 51197400 |
2010-01-11 | 115557400 | 14479800 | 5730400 | 68754700 |
2010-01-12 | 148614900 | 9742900 | 8081500 | 65912100 |
2010-01-13 | 151473000 | 13041800 | 6455400 | 51863500 |
2010-01-14 | 108223500 | 8511900 | 7111800 | 63228100 |
2010-01-15 | 148516900 | 10909600 | 8494400 | 79913200 |
price.pct_change
Signature: price.pct_change(periods=1, fill_method=’pad’, limit=None, freq=None, **kwargs)
Docstring:
Percent change over given number of periods.
Parameters
periods : int, default 1
Periods to shift for forming percent change
fill_method : str, default ‘pad’
How to handle NAs before computing percent changes
limit : int, default None
The number of consecutive NAs to fill before stopping
freq : DateOffset, timedelta, or offset alias string, optional
Increment to use from time series API (e.g. ‘M’ or BDay())
Returns
chg : NDFrame
Notes
By default, the percentage change is calculated along the stat
axis: 0, or Index
, for DataFrame
and 1, or minor
forPanel
. You can change this with the axis
keyword argument.
|
|
AAPL | GOOG | IBM | MSFT | |
---|---|---|---|---|
Date | ||||
2017-02-21 | 0.007221 | 0.004335 | -0.002269 | -0.002012 |
2017-02-22 | 0.002999 | -0.001082 | 0.004937 | -0.002016 |
2017-02-23 | -0.004230 | 0.000686 | 0.002760 | 0.004040 |
2017-02-24 | 0.000952 | -0.003236 | -0.001651 | 0.000000 |
2017-02-27 | 0.001976 | 0.000772 | -0.010753 | -0.006035 |
|
|
0.49525655865062668
|
|
8.5880535146740545e-05
|
|
AAPL | GOOG | IBM | MSFT | |
---|---|---|---|---|
AAPL | 1.000000 | 0.409523 | 0.381374 | 0.388875 |
GOOG | 0.409523 | 1.000000 | 0.402781 | 0.470781 |
IBM | 0.381374 | 0.402781 | 1.000000 | 0.495257 |
MSFT | 0.388875 | 0.470781 | 0.495257 | 1.000000 |
|
|
AAPL | GOOG | IBM | MSFT | |
---|---|---|---|---|
AAPL | 0.000269 | 0.000105 | 0.000075 | 0.000092 |
GOOG | 0.000105 | 0.000244 | 0.000075 | 0.000106 |
IBM | 0.000075 | 0.000075 | 0.000144 | 0.000086 |
MSFT | 0.000092 | 0.000106 | 0.000086 | 0.000209 |
|
|
AAPL 0.381374
GOOG 0.402781
IBM 1.000000
MSFT 0.495257
dtype: float64
|
|
AAPL -0.074055
GOOG -0.009543
IBM -0.194107
MSFT -0.090724
dtype: float64
唯一值, 值计数以及成员资格
|
|
|
|
array(['c', 'a', 'd', 'b'], dtype=object)
|
|
c 3
a 3
b 2
d 1
dtype: int64
|
|
a 3
d 1
b 2
c 3
dtype: int64
|
|
0 True
1 False
2 False
3 False
4 False
5 True
6 True
7 True
8 True
dtype: bool
|
|
0 c
5 b
6 b
7 c
8 c
dtype: object
|
|
Qu1 | Qu2 | Qu3 | |
---|---|---|---|
0 | 1 | 2 | 1 |
1 | 3 | 3 | 5 |
2 | 4 | 1 | 2 |
3 | 3 | 2 | 4 |
4 | 4 | 3 | 4 |
|
|
Qu1 | Qu2 | Qu3 | |
---|---|---|---|
1 | 1.0 | 1.0 | 1.0 |
2 | 0.0 | 2.0 | 1.0 |
3 | 2.0 | 2.0 | 0.0 |
4 | 2.0 | 0.0 | 2.0 |
5 | 0.0 | 0.0 | 1.0 |
处理缺失数据
|
|
0 aardvark
1 artichoke
2 NaN
3 avocado
dtype: object
|
|
0 False
1 False
2 True
3 False
dtype: bool
|
|
0 True
1 False
2 True
3 False
dtype: bool
滤除缺失数据
|
|
0 1.0
2 3.5
4 7.0
dtype: float64
|
|
0 1.0
2 3.5
4 7.0
dtype: float64
|
|
0 | 1 | 2 | |
---|---|---|---|
0 | 1.0 | 6.5 | 3.0 |
1 | 1.0 | NaN | NaN |
2 | NaN | NaN | NaN |
3 | NaN | 6.5 | 3.0 |
|
|
0 | 1 | 2 | |
---|---|---|---|
0 | 1.0 | 6.5 | 3.0 |
|
|
0 | 1 | 2 | |
---|---|---|---|
0 | 1.0 | 6.5 | 3.0 |
1 | 1.0 | NaN | NaN |
3 | NaN | 6.5 | 3.0 |
|
|
0 | 1 | 2 | 4 | |
---|---|---|---|---|
0 | 1.0 | 6.5 | 3.0 | NaN |
1 | 1.0 | NaN | NaN | NaN |
2 | NaN | NaN | NaN | NaN |
3 | NaN | 6.5 | 3.0 | NaN |
|
|
0 | 1 | 2 | |
---|---|---|---|
0 | 1.0 | 6.5 | 3.0 |
1 | 1.0 | NaN | NaN |
2 | NaN | NaN | NaN |
3 | NaN | 6.5 | 3.0 |
|
|
0 | 1 | 2 | |
---|---|---|---|
0 | -0.204708 | NaN | NaN |
1 | -0.555730 | NaN | NaN |
2 | 0.092908 | NaN | NaN |
3 | 1.246435 | NaN | -1.296221 |
4 | 0.274992 | NaN | 1.352917 |
5 | 0.886429 | -2.001637 | -0.371843 |
6 | 1.669025 | -0.438570 | -0.539741 |
|
|
0 | 1 | 2 | |
---|---|---|---|
3 | 1.246435 | NaN | -1.296221 |
4 | 0.274992 | NaN | 1.352917 |
5 | 0.886429 | -2.001637 | -0.371843 |
6 | 1.669025 | -0.438570 | -0.539741 |
填充缺失数据
|
|
0 | 1 | 2 | |
---|---|---|---|
0 | -0.204708 | 0.000000 | 0.000000 |
1 | -0.555730 | 0.000000 | 0.000000 |
2 | 0.092908 | 0.000000 | 0.000000 |
3 | 1.246435 | 0.000000 | -1.296221 |
4 | 0.274992 | 0.000000 | 1.352917 |
5 | 0.886429 | -2.001637 | -0.371843 |
6 | 1.669025 | -0.438570 | -0.539741 |
|
|
0 | 1 | 2 | |
---|---|---|---|
0 | -0.204708 | 0.500000 | NaN |
1 | -0.555730 | 0.500000 | NaN |
2 | 0.092908 | 0.500000 | NaN |
3 | 1.246435 | 0.500000 | -1.296221 |
4 | 0.274992 | 0.500000 | 1.352917 |
5 | 0.886429 | -2.001637 | -0.371843 |
6 | 1.669025 | -0.438570 | -0.539741 |
fillna默认返回新对象,但也可以对现有对象就地修改
|
|
0 | 1 | 2 | |
---|---|---|---|
0 | -0.204708 | 0.000000 | 0.000000 |
1 | -0.555730 | 0.000000 | 0.000000 |
2 | 0.092908 | 0.000000 | 0.000000 |
3 | 1.246435 | 0.000000 | -1.296221 |
4 | 0.274992 | 0.000000 | 1.352917 |
5 | 0.886429 | -2.001637 | -0.371843 |
6 | 1.669025 | -0.438570 | -0.539741 |
|
|
0 | 1 | 2 | |
---|---|---|---|
0 | 0.476985 | 3.248944 | -1.021228 |
1 | -0.577087 | 0.124121 | 0.302614 |
2 | 0.523772 | NaN | 1.343810 |
3 | -0.713544 | NaN | -2.370232 |
4 | -1.860761 | NaN | NaN |
5 | -1.265934 | NaN | NaN |
|
|
0 | 1 | 2 | |
---|---|---|---|
0 | 0.476985 | 3.248944 | -1.021228 |
1 | -0.577087 | 0.124121 | 0.302614 |
2 | 0.523772 | 0.124121 | 1.343810 |
3 | -0.713544 | 0.124121 | -2.370232 |
4 | -1.860761 | 0.124121 | -2.370232 |
5 | -1.265934 | 0.124121 | -2.370232 |
|
|
0 | 1 | 2 | |
---|---|---|---|
0 | 0.476985 | 3.248944 | -1.021228 |
1 | -0.577087 | 0.124121 | 0.302614 |
2 | 0.523772 | 0.124121 | 1.343810 |
3 | -0.713544 | 0.124121 | -2.370232 |
4 | -1.860761 | NaN | -2.370232 |
5 | -1.265934 | NaN | -2.370232 |
|
|
0 1.000000
1 3.833333
2 3.500000
3 3.833333
4 7.000000
dtype: float64
层次索引
|
|
a 1 0.332883
2 -2.359419
3 -0.199543
b 1 -1.541996
2 -0.970736
3 -1.307030
c 1 0.286350
2 0.377984
d 2 -0.753887
3 0.331286
dtype: float64
|
|
MultiIndex(levels=[['a', 'b', 'c', 'd'], [1, 2, 3]],
labels=[[0, 0, 0, 1, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 1, 2, 0, 1, 1, 2]])
|
|
1 -1.541996
2 -0.970736
3 -1.307030
dtype: float64
|
|
b 1 -1.541996
2 -0.970736
3 -1.307030
c 1 0.286350
2 0.377984
dtype: float64
|
|
b 1 -1.541996
2 -0.970736
3 -1.307030
d 2 -0.753887
3 0.331286
dtype: float64
|
|
a -2.359419
b -0.970736
c 0.377984
d -0.753887
dtype: float64
|
|
1 | 2 | 3 | |
---|---|---|---|
a | 0.332883 | -2.359419 | -0.199543 |
b | -1.541996 | -0.970736 | -1.307030 |
c | 0.286350 | 0.377984 | NaN |
d | NaN | -0.753887 | 0.331286 |
|
|
a 1 0.332883
2 -2.359419
3 -0.199543
b 1 -1.541996
2 -0.970736
3 -1.307030
c 1 0.286350
2 0.377984
d 2 -0.753887
3 0.331286
dtype: float64
|
|
Ohio | Colorado | |||
---|---|---|---|---|
Green | Red | Green | ||
a | 1 | 0 | 1 | 2 |
2 | 3 | 4 | 5 | |
b | 1 | 6 | 7 | 8 |
2 | 9 | 10 | 11 |
|
|
state | Ohio | Colorado | ||
---|---|---|---|---|
color | Green | Red | Green | |
key1 | key2 | |||
a | 1 | 0 | 1 | 2 |
2 | 3 | 4 | 5 | |
b | 1 | 6 | 7 | 8 |
2 | 9 | 10 | 11 |
|
|
color | Green | Red | |
---|---|---|---|
key1 | key2 | ||
a | 1 | 0 | 1 |
2 | 3 | 4 | |
b | 1 | 6 | 7 |
2 | 9 | 10 |
创建MultiIndex对象复用
|
|
重排分级顺序
|
|
state | Ohio | Colorado | ||
---|---|---|---|---|
color | Green | Red | Green | |
key2 | key1 | |||
1 | a | 0 | 1 | 2 |
2 | a | 3 | 4 | 5 |
1 | b | 6 | 7 | 8 |
2 | b | 9 | 10 | 11 |
|
|
state | Ohio | Colorado | ||
---|---|---|---|---|
color | Green | Red | Green | |
key1 | key2 | |||
a | 1 | 0 | 1 | 2 |
b | 1 | 6 | 7 | 8 |
a | 2 | 3 | 4 | 5 |
b | 2 | 9 | 10 | 11 |
|
|
state | Ohio | Colorado | ||
---|---|---|---|---|
color | Green | Red | Green | |
key2 | key1 | |||
1 | a | 0 | 1 | 2 |
b | 6 | 7 | 8 | |
2 | a | 3 | 4 | 5 |
b | 9 | 10 | 11 |
根据级别汇总统计
|
|
state | Ohio | Colorado | |
---|---|---|---|
color | Green | Red | Green |
key2 | |||
1 | 6 | 8 | 10 |
2 | 12 | 14 | 16 |
|
|
color | Green | Red | |
---|---|---|---|
key1 | key2 | ||
a | 1 | 2 | 1 |
2 | 8 | 4 | |
b | 1 | 14 | 7 |
2 | 20 | 10 |
使用DataFrame的列
|
|
a | b | c | d | |
---|---|---|---|---|
0 | 0 | 7 | one | 0 |
1 | 1 | 6 | one | 1 |
2 | 2 | 5 | one | 2 |
3 | 3 | 4 | two | 0 |
4 | 4 | 3 | two | 1 |
5 | 5 | 2 | two | 2 |
6 | 6 | 1 | two | 3 |
|
|
a | b | ||
---|---|---|---|
c | d | ||
one | 0 | 0 | 7 |
1 | 1 | 6 | |
2 | 2 | 5 | |
two | 0 | 3 | 4 |
1 | 4 | 3 | |
2 | 5 | 2 | |
3 | 6 | 1 |
|
|
a | b | c | d | ||
---|---|---|---|---|---|
c | d | ||||
one | 0 | 0 | 7 | one | 0 |
1 | 1 | 6 | one | 1 | |
2 | 2 | 5 | one | 2 | |
two | 0 | 3 | 4 | two | 0 |
1 | 4 | 3 | two | 1 | |
2 | 5 | 2 | two | 2 | |
3 | 6 | 1 | two | 3 |
|
|
c | d | a | b | |
---|---|---|---|---|
0 | one | 0 | 0 | 7 |
1 | one | 1 | 1 | 6 |
2 | one | 2 | 2 | 5 |
3 | two | 0 | 3 | 4 |
4 | two | 1 | 4 | 3 |
5 | two | 2 | 5 | 2 |
6 | two | 3 | 6 | 1 |
拓展话题
整数索引
|
|
2.0
|
|
0 0.0
1 1.0
2 2.0
dtype: float64
|
|
2.0
|
|
0 0.0
1 1.0
dtype: float64
|
|
2
|
|
0 | 1 | |
---|---|---|
2 | 0 | 1 |
0 | 2 | 3 |
1 | 4 | 5 |
0 0
1 1
Name: 2, dtype: int32
面板数据
|
|
|
|
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 1820 (major_axis) x 6 (minor_axis)
Items axis: AAPL to MSFT
Major_axis axis: 2010-01-04 00:00:00 to 2017-02-27 00:00:00
Minor_axis axis: Open to Adj Close
|
|
AAPL | DELL | GOOG | MSFT | |
---|---|---|---|---|
Date | ||||
2010-01-04 | 27.727039 | 14.06528 | 313.062468 | 25.555485 |
2010-01-05 | 27.774976 | 14.38450 | 311.683844 | 25.563741 |
2010-01-06 | 27.333178 | 14.10397 | 303.826685 | 25.406859 |
2010-01-07 | 27.282650 | 14.23940 | 296.753749 | 25.142634 |
2010-01-08 | 27.464034 | 14.36516 | 300.709808 | 25.316031 |
2010-01-11 | 27.221758 | 14.37483 | 300.255255 | 24.994007 |
2010-01-12 | 26.912110 | 14.56830 | 294.945572 | 24.828866 |
2010-01-13 | 27.291720 | 14.57797 | 293.252243 | 25.060064 |
2010-01-14 | 27.133657 | 14.22005 | 294.630868 | 25.563741 |
2010-01-15 | 26.680198 | 13.92985 | 289.710772 | 25.481172 |
|
|
Open | High | Low | Close | Volume | Adj Close | |
---|---|---|---|---|---|---|
AAPL | 569.159996 | 572.650009 | 560.520012 | 560.989983 | 130246900.0 | 72.681610 |
DELL | 12.150000 | 12.300000 | 12.045000 | 12.070000 | 19397600.0 | 11.675920 |
GOOG | 571.790972 | 572.650996 | 568.350996 | 570.981000 | 6138700.0 | 285.205295 |
MSFT | 28.760000 | 28.959999 | 28.440001 | 28.450001 | 56634300.0 | 24.942239 |
|
|
AAPL | DELL | GOOG | MSFT | |
---|---|---|---|---|
Date | ||||
2012-05-22 | 72.160786 | 14.58765 | 300.100412 | 26.090721 |
2012-05-23 | 73.921494 | 12.08221 | 304.426106 | 25.520864 |
2012-05-24 | 73.242607 | 12.04351 | 301.528978 | 25.485795 |
2012-05-25 | 72.850038 | 12.05319 | 295.470050 | 25.477028 |
2012-05-28 | NaN | 12.05319 | NaN | NaN |
2012-05-29 | 74.143041 | 12.24666 | 296.873645 | 25.915380 |
2012-05-30 | 75.037005 | 12.14992 | 293.821674 | 25.722505 |
2012-05-31 | 74.850442 | 11.92743 | 290.140354 | 25.591000 |
2012-06-01 | 72.681610 | 11.67592 | 285.205295 | 24.942239 |
2012-06-04 | 73.109156 | 11.60821 | 289.006480 | 25.029908 |
|
|
Open | High | Low | Close | Volume | Adj Close | ||
---|---|---|---|---|---|---|---|
Date | minor | ||||||
2012-05-30 | AAPL | 569.199997 | 579.989990 | 566.559990 | 579.169998 | 132357400.0 | 75.037005 |
DELL | 12.590000 | 12.700000 | 12.460000 | 12.560000 | 19787800.0 | 12.149920 | |
GOOG | 588.161028 | 591.901014 | 583.530999 | 588.230992 | 3827600.0 | 293.821674 | |
MSFT | 29.350000 | 29.480000 | 29.120001 | 29.340000 | 41585500.0 | 25.722505 | |
2012-05-31 | AAPL | 580.740021 | 581.499985 | 571.460022 | 577.730019 | 122918600.0 | 74.850442 |
DELL | 12.530000 | 12.540000 | 12.330000 | 12.330000 | 19955600.0 | 11.927430 | |
GOOG | 588.720982 | 590.001032 | 579.001013 | 580.860990 | 5958800.0 | 290.140354 | |
MSFT | 29.299999 | 29.420000 | 28.940001 | 29.190001 | 39134000.0 | 25.591000 | |
2012-06-01 | AAPL | 569.159996 | 572.650009 | 560.520012 | 560.989983 | 130246900.0 | 72.681610 |
DELL | 12.150000 | 12.300000 | 12.045000 | 12.070000 | 19397600.0 | 11.675920 | |
GOOG | 571.790972 | 572.650996 | 568.350996 | 570.981000 | 6138700.0 | 285.205295 | |
MSFT | 28.760000 | 28.959999 | 28.440001 | 28.450001 | 56634300.0 | 24.942239 | |
2012-06-04 | AAPL | 561.500008 | 567.499985 | 548.499977 | 564.289978 | 139248900.0 | 73.109156 |
DELL | 12.110000 | 12.112500 | 11.800000 | 12.000000 | 17015700.0 | 11.608210 | |
GOOG | 570.220958 | 580.491016 | 570.011006 | 578.590973 | 4883500.0 | 289.006480 | |
MSFT | 28.620001 | 28.780001 | 28.320000 | 28.549999 | 47926300.0 | 25.029908 | |
2012-06-05 | AAPL | 561.269989 | 566.470001 | 558.330002 | 562.830025 | 97053600.0 | 72.920005 |
DELL | 11.950000 | 12.240000 | 11.950000 | 12.160000 | 15620900.0 | 11.762980 | |
GOOG | 575.451008 | 578.131003 | 566.470986 | 570.410999 | 4697200.0 | 284.920579 | |
MSFT | 28.510000 | 28.750000 | 28.389999 | 28.510000 | 45715400.0 | 24.994841 | |
2012-06-06 | AAPL | 567.770004 | 573.849983 | 565.499992 | 571.460022 | 100363900.0 | 74.038104 |
DELL | 12.210000 | 12.280000 | 12.090000 | 12.215000 | 20779900.0 | 11.816190 | |
GOOG | 576.480979 | 581.970971 | 573.611004 | 580.570966 | 4207200.0 | 289.995487 | |
MSFT | 28.879999 | 29.370001 | 28.809999 | 29.350000 | 46860500.0 | 25.731273 | |
2012-06-07 | AAPL | 577.290009 | 577.320023 | 570.500000 | 571.720001 | 94941700.0 | 74.071787 |
DELL | 12.320000 | 12.410000 | 12.120000 | 12.130000 | 20074000.0 | 11.733960 | |
GOOG | 587.601014 | 587.891038 | 577.251006 | 578.230986 | 3530100.0 | 288.826666 | |
MSFT | 29.639999 | 29.700001 | 29.170000 | 29.230000 | 37792800.0 | 25.626067 | |
2012-06-08 | AAPL | 571.599998 | 580.580017 | 568.999992 | 580.319984 | 86879100.0 | 75.185997 |
DELL | 12.130000 | 12.225000 | 12.020000 | 12.120000 | 18155600.0 | 11.724290 | |
… | … | … | … | … | … | … | … |
2017-02-13 | AAPL | 133.080002 | 133.820007 | 132.750000 | 133.289993 | 23035400.0 | 133.289993 |
GOOG | 816.000000 | 820.958984 | 815.489990 | 819.239990 | 1198100.0 | 819.239990 | |
MSFT | 64.239998 | 64.860001 | 64.129997 | 64.720001 | 22920100.0 | 64.330000 | |
2017-02-14 | AAPL | 133.470001 | 135.089996 | 133.250000 | 135.020004 | 32815500.0 | 135.020004 |
GOOG | 819.000000 | 823.000000 | 816.000000 | 820.450012 | 1053600.0 | 820.450012 | |
MSFT | 64.410004 | 64.720001 | 64.019997 | 64.570000 | 23065900.0 | 64.570000 | |
2017-02-15 | AAPL | 135.520004 | 136.270004 | 134.619995 | 135.509995 | 35501600.0 | 135.509995 |
GOOG | 819.359985 | 823.000000 | 818.469971 | 818.979980 | 1304000.0 | 818.979980 | |
MSFT | 64.500000 | 64.570000 | 64.160004 | 64.529999 | 16917000.0 | 64.529999 | |
2017-02-16 | AAPL | 135.669998 | 135.899994 | 134.839996 | 135.350006 | 22118000.0 | 135.350006 |
GOOG | 819.929993 | 824.400024 | 818.979980 | 824.159973 | 1281700.0 | 824.159973 | |
MSFT | 64.739998 | 65.239998 | 64.440002 | 64.519997 | 20524700.0 | 64.519997 | |
2017-02-17 | AAPL | 135.100006 | 135.830002 | 135.100006 | 135.720001 | 22084500.0 | 135.720001 |
GOOG | 823.020020 | 828.070007 | 821.655029 | 828.070007 | 1597800.0 | 828.070007 | |
MSFT | 64.470001 | 64.690002 | 64.300003 | 64.620003 | 21234600.0 | 64.620003 | |
2017-02-21 | AAPL | 136.229996 | 136.750000 | 135.979996 | 136.699997 | 24265100.0 | 136.699997 |
GOOG | 828.659973 | 833.450012 | 828.349976 | 831.659973 | 1247700.0 | 831.659973 | |
MSFT | 64.610001 | 64.949997 | 64.449997 | 64.489998 | 19384900.0 | 64.489998 | |
2017-02-22 | AAPL | 136.429993 | 137.119995 | 136.110001 | 137.110001 | 20745300.0 | 137.110001 |
GOOG | 828.659973 | 833.250000 | 828.640015 | 830.760010 | 982900.0 | 830.760010 | |
MSFT | 64.330002 | 64.389999 | 64.050003 | 64.360001 | 19259700.0 | 64.360001 | |
2017-02-23 | AAPL | 137.380005 | 137.479996 | 136.300003 | 136.529999 | 20704100.0 | 136.529999 |
GOOG | 830.119995 | 832.460022 | 822.880005 | 831.330017 | 1470100.0 | 831.330017 | |
MSFT | 64.419998 | 64.730003 | 64.190002 | 64.620003 | 20235200.0 | 64.620003 | |
2017-02-24 | AAPL | 135.910004 | 136.660004 | 135.279999 | 136.660004 | 21690900.0 | 136.660004 |
GOOG | 827.729980 | 829.000000 | 824.200012 | 828.640015 | 1386600.0 | 828.640015 | |
MSFT | 64.529999 | 64.800003 | 64.139999 | 64.620003 | 21705200.0 | 64.620003 | |
2017-02-27 | AAPL | 137.139999 | 137.440002 | 136.279999 | 136.929993 | 20196400.0 | 136.929993 |
GOOG | 824.549988 | 830.500000 | 824.000000 | 829.280029 | 1099500.0 | 829.280029 | |
MSFT | 64.540001 | 64.540001 | 64.050003 | 64.230003 | 15850400.0 | 64.230003 |
3952 rows × 6 columns
|
|
<class 'pandas.core.panel.Panel'>
Dimensions: 6 (items) x 1207 (major_axis) x 4 (minor_axis)
Items axis: Open to Adj Close
Major_axis axis: 2012-05-30 00:00:00 to 2017-02-27 00:00:00
Minor_axis axis: AAPL to MSFT